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Area Distribution for Directed Random Walks
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We study the probability distribution for the area under a directed random walk
in the plane. The walk can serve as a simple model for avalanches based on the
idea that the front of an avalanche can be described by a random walk and the
size is given by the area enclosed. This model captures some of the qualitative
features of earthquakes, avalanches, and other self-organized critical phenomena
in one dimension. By finding nonlinear functional relations for the generating
functions we calculate directly the exponent in the size distribution law and find
it to be 4/3.
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1. INTRODUCTION

The properties of directed random walks (DRW) are of interest for their
own sake and also because many other physical problems can be mapped
onto them, at least in some approximation. In this paper we compute
various properties of an ensemble of directed random walks which arises,
for example, from a simple mean-field-like approach to avalanches.

The ensemble consists of walks in R2 between points with integer
coordinates which start at the origin and are confined to the first quadrant.
At every step, /, the x coordinate increases by one, xi+1=xi+ 1. The y
coordinate may increase by one, yi+1 = yi+ 11 with weight a; stay the
same, yi+1 = yi, with weight /?; or decrease by one, yi+1 = yi -1, with
weight <x. If the value of the y coordinate at the ith step is zero then the
walk stops (the very first step must therefore be from (0, 0) to (1, 1)). For
most of this paper we will work with < x = 1 , y5 = 0; however the more
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general case is solvable by precisely the same methods and enables us to
study the universal nature of the exponents. In addition we will consider
the case where there is a reflecting barrier at y = h; if the walk hits the
barrier at the ith step then the next step must be to decrease y by one.

Within this ensemble it is natural to enquire about the number of
walks satisfying various conditions (or, equivalently, the probability that
a given walk satisfies those conditions). We define the duration of the
walk, T, to be that (non-zero) value of i for which yi = 0 and the area, A, by

The probability P( T) that a walk has duration T is the classic gambler's
ruin problem which was first solved by Lagrange.(1) We are mainly con-
cerned with the probability P(A) that a walk has area A. This problem
would doubtless also have been solved by Lagrange if the authorities had
levied a tax on a player's integrated holding over a game. We will show
explicitly that in the absence of a reflecting barrier

for large enough A, a result that is expected on scaling grounds. In the
presence of a reflecting barrier the dependence becomes exponential for
large enough A.

Our method is to derive a nonlinear functional equation for the
generating function for the number of walks with a fixed duration covering
a given area. After completing this work we discovered that our method is
quite similar to the one recently introduced for the study of various
polygon problems by Prellberg and Brak.(2) Their polygon problems are
expected to be in the same universality class as the one studied here. The
nonlinear functional equation for the generating function has a solution in
terms of g-series. However, it is not easy to extract the critical exponents
from the q-series so we adopt a more direct approach. A similar problem
was studied by Abraham and Smith(3) in relation to a simple model of
wetting, and in continous time by Louchard(4) where the generating func-
tion for the Brownian excursion area density is determined.

The ensemble of walks we study is related to a simple model for the
propagation of a one-dimensional avalanche front which was suggested by
studying earthquakes in the Burridge-Knopoff model. (5-9) The basic idea is
to assume that neighbouring parts of an avalanche front are correlated in
the following way. If we label elements of the avalanche by integers i and
an element i moves a distance h, then the displacement of its neighbour,
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labelled by i+ 1, is distributed with a probability distribution P i ( h i + 1 ) =
< t > ( h i + 1 — h i ) which is centered on hi but otherwise independent of i. This
distribution is modified by an appropriate boundary condition at hi+1 = 0
amounting to a certain killing probability for the avalanche. The simplest
possible probability distribution <j> corresponds to the avalanche front per-
forming a Bernoulli random walk on the positive integers and terminating
once it returns to 0; this is precisely the DRW ensemble defined above with
<x= 1, /? = 0. The scaling law relating the frequency of avalanches, Nw(k), to
their width (= number of sites that move) k, is

and the frequency, NS(A), of avalanches of size A is

The introduction of a mean field theory for self-organized criticality(10) is
quite natural and has been done in many different ways for different
models yielding identical critical exponents. (11-14) The exponent 4/3 has
been derived by simple scaling arguments in a model of avalanches related
to the one we have just described.(15) Sometimes, for example in earthquake
models, it is natural to place an upper bound on the maximal allowed dis-
placement hi and in that case the power law turns into an exponential decay
for large A. The relation to earthquakes, in which (4) is the Gutenberg-
Richter law,(16) is discussed in more detail in ref. 17.

2. SHORT-TIME BEHAVIOUR

We begin by considering the DRW ensemble for <x = 1, /? = 0, in the
absence of the reflecting barrier. Let W denote the set of all such walks and
let N(A, T) denote the number of walks in -W of duration T and area A
(1). Let

The probability that the walk returns to the origin after T steps is given
by(1)



716 Jonsson and Wheater

if T is even and 0 otherwise (we divide by 2T-1 since the first step in the
walk is given). For large T

Similarly, the conditional probability P(A \ T) that a walk covers an area A,
given that it lasts a time T, can be written as

It follows that the probability of area A is given by

It is natural to expect the average height < h n > of a walk which lasts a time
T to scale like N/T for large T and hence the average area < A > ~ T3/2 for
such walks. If we drop the constraint that the walk ends when it hits the
x axis and define the area under the walks to be positive if the walk is in
the upper half plane and negative when it is in the lower half plane, we can
express the area as a sum of independent but non-identical random
variables. The generalized central limit theorem(1) applies to this sum and
we find that asymptotically the area is normally distributed around zero
with a variance T3. Assuming that P(A \ T) is normally distributed around
<A> with the same variance, T3, we expect that for large A

Below we shall verify that the asymptotic behaviour of P(A) is indeed given
by (10) even though one can prove that P ( A \ T ) is not normally dis-
tributed by computing its first few moments.

To prove (10) we begin by finding an equation for the generating func-
tion of walks. Let ffi denote the class of directed walks in ~W which avoid
the line y = 1 until they return to y = 0, i.e., if w e ifr and w is of duration
T then yi>1 for 1< i<T-2 . Now denote by N ( A , T ) the number of
paths in "$' which return to 0 at time T and cover an area A. Then
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Fig. 1. This figure illustrates the one to one correspondence between paths in i#* of duration
T and paths in nr of duration T-2.

(see Fig. 1). Now consider any directed walk w&'W which lasts a time
T>2 and covers an area A. Let T1 denote the smallest integer > 1 such
that yT1 = 1. The largest possible value of T1 is of course T1 = T— 1. If we
cut the path w in two pieces at the point (T 1 , 1) then we can associate
uniquely to w two paths, weffi and w1&W, of duration T1 + 1 and
T- T1 + 1, respectively, see Fig. 2. In the extreme case T1 = T- 1 the

Fig. 2. This figure illustrates the unique decomposition of any directed path into a pair of
paths in "9" and *".
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second walk is the trivial one of length 2. If we denote the area under the
first walk by A1 then the area under the second one equals A — A 1 + 1 and
we find that

by (11). The first term on the right side of (12) corresponds to the two step
path. We define the generating function f(z, u) for the numbers N(A, T) by

which is convergent for \z\ < 1 and \u\ < 1/2. The recurrence relation (12) can
now be rewritten as the non-linear functional equation

It is straightforward to extend this derivation to general weights a, p.
Letting

where n+(w) is the number of steps in w for which y increases, and the sum
runs over walks which may remain at a constant y-coordinate, we find

The equations (14) and (16) can be linearized by the method of ref. 2.
For example, if we use the substitution

in (14) we obtain
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which has the q-series solution

where

The generating functions for polygon problems were first obtained in terms
of q-series(18,19) by solving the coupled linear eqations for the generating
functions found using Temperley's method.(20) The analysis of the q-series
solution to extract critical exponents is complicated; for the polygon
problems this was tackled in ref. 2 and, more completely, by Prellberg(21)

who found an explicit form for the scaling function which can be compared
directly with the continuous time calculations in ref. 4. However, as we will
show, it is straightforward to obtain critical exponents by working directly
with the nonlinear functional equation for the generating function and
avoiding the q-series analysis entirely.

For z= 1 we can easily solve (14) and find

which for u = 1/2 takes the value 1 in accordance with (9); the square root
singularity implies the asymptotic behaviour (7) for P(T). For general
values of z and u (14) and (16) have explicit solutions in terms of q-series
but they can also be rearranged to yield a continued fraction; for example
(14) yields upon iteration the continued fraction for f(z, u)

This function has a natural boundary at |z| = 1 meaning that it cannot be
analytically continued beyond the unit circle; such behaviour is generic for
area generating functions in polygon problems.(2)

Looking at Eq. (10) we expect the average area <A> to diverge, i.e.,
we expect
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Indeed, we shall prove that

as w t 1> for any n > 1. Let us define

Then

For any path of duration T, covering an area A, it is easy to see that

The lower bound is obtained by considering the path which zigzags
between 1 and 2 and covers the smallest possible area while the upper
bound corresponds to the triangular path that climbs to height T/2 in time
T/2 and then descends to zero in time T/2. It follows that for u smaller than
but close to 1 we have the bounds

where c1 and c2 are positive constants. It is natural to regard u as a tem-
perature-like parameter and u = 1 as a critical point so we expect scaling as
this point is approached. Assuming that

for large A, where F is a function decaying more rapidly than any power,
we find that

Since this is valid for any n it follows from Eq. (24) that

This is of course consistent with the inequalities (28) which imply that
1<K<1
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In order to verify Eq. (24) let us denote the derivatives of the gener-
ating function f with respect to the first and second argument by djf and
<32/, respectively. We begin by considering the case « = 1. Differentiating
Eq. (14) with respect to 2 we obtain

Putting z= 1, rearranging and using Eq. (21) we obtain

Assume now that Eq. (24) holds for n < N— 1 where N < 2 . Differentiating
Eq. (14) N times with respect to z yields

Rearranging we find that

By the inductive hypothesis the most singular terms on the right hand side
of Eq. (35) correspond to j + k = N if k > 0 and j = N—1 when k = 0. The
desired result follows.

Working slightly harder we can determine the coefficient of the leading
divergence of the Nth moment of PU(A) and this allows us to place a
further restriction on the function F introduced above. In view of Eq. (24)
one can write
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It is straightforward to check that Eq. (35) determines the following recur-
sion relation for the coefficients CN

It follows that up to power corrections

for large N.
Suppose now that the function F in (29) is an exponential function of

a power, i.e.,

for some constants a.,q>0. Using the ansatz (29) to calculate the Nth
moment of the area distribution we find that q is fixed to equal 3/2 by the
asymptotic formula (38). We therefore expect that

in agreement with the bound (28).
Similar, although slightly more messy, manipulations establish the

same results for the generalized generating function g(z, u) (16). This com-
pletes our disussion of the distribution of DRWs where we do not need to
take the upper cutoff h into account. So, for example, the exponent 4/3
governs the size distribution of small avalanches in the presence of a cutoff
as claimed in Section 1.

3. LONG-TIME BEHAVIOUR

We now consider a directed random walk with a reflecting barrier at
height y = h. Let p i ( t ) be the probability of the walk being at height i after
t steps; then the initial condition is p i ( 1 ) = Si1 . We let p(t) denote the
column vector whose ith entry is p i ( t ) . Then

where M is a tridiagonal matrix with M i,i = 0, M2,1 =2, Mh,h+1 = 0 and
all other elements on the upper and lower diagonals equal to one. The
probability that a walk lasts exactly T steps is evidently
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Letting ei , i = 0,...,h, denote the standard orthonormal basis on Rh + 1, we
find

Let D denote the matrix whose elements are defined by

i, j = 0,..., h. The probability P(A, T) that a walk lasts a time T and covers
an area A is given by the coefficient of ZA in the matrix element

The generating function for the probabilities P(A, T), defined as

can therefore be expressed as

since the Neumann series for the inverse of (1 -uMD) is easily seen to con-
verge for \u\ <1 and |z| < 1. The function Q is analogous to the function f
in the previous section and we have placed a factor of 2 in front of the
variable u in its definition for convenience.

Equation (47) allows us in principle to calculate P(A, T). However,
the interesting feature of P(A, T) is that it falls exponentially with T and
P(A, T) = 0 unless A<hT. It follows that P(A) = ̂ TP(A, T) falls
exponentially with A provided A is large enough. In order to establish this
exponential decay it suffices to show that Q(1, u) is finite for some u>1.
We can write

where /i = ( 2 u ) - 1 . Evaluating the matrix element in Eq. (48) we find

in the case h > 3, where
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and we are assuming A < 1 . The first singularity of Q (1 ,u ) as u moves
beyond 1 is encountered for the smallest #e[0 ,2n) for which the
denominator in Eq. (49) vanishes, i.e.,

It follows that the radius of convergence of Q(1, u) is

and for large A we find

where c and C are positive constants and c can be taken to be independent
of h.

The exponential decay of P(A) takes over from the power law found
in the previous section for A = h3 since a random walk must have at least
h2 steps in order to feel the effect of the reflecting barrier at y = h. In order
to prove this note that we can write

where the contour encloses the unit disc in the complex plane. Calculating
the residues we find that

If Th -2 is very small then the sum over n can be approximated by a
gaussian integral which gives P(T)~T~3/2; thus we see that at large h
P(T) crosses over from exponential decay to T~3/2 decay for T=h2 .

4. DISCUSSION

We do not expect our principal results to change if the simple Bernoulli
random walk is replaced by a random walk with any rapidly decaying
transition function. The exponent 4/3 and the exponential decay in the
presence of a reflecting barrier ought to be universal. This is easily checked
for a random walk with arbitrary a and /? and also by numerical calcula-
tions in a few other simple cases.



We do, however, expect the power law to change for random walks
with transition functions (j> which do not decay rapidly (so that some
higher moments of (j> will diverge). In earthquakes the size distribution
exponent for small and intermediate size events varies from around 2/3 to
values greater than 1. Using the statistics of avalanches one can probably
concoct a random walk model with an identical distribution but the more
interesting problem of the correlations between different avalanches cannot
be studied in this framework without allowing interacting random walks.
The principal virtue of the model we have discussed is that it gives us a
qualitative and quantitative insight into the genesis of the power law dis-
tribution for avalanches without introducing any complicated dynamics.
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